Nuprl Lemma : union-continuous_wf

[F:Type ⟶ Type]. (union-continuous{i:l}(T.F[T]) ∈ ℙ')


Proof




Definitions occuring in Statement :  union-continuous: union-continuous{i:l}(T.F[T]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T union-continuous: union-continuous{i:l}(T.F[T]) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  uall_wf subtype_rel_wf tunion_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality lambdaEquality functionEquality cumulativity hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (union-continuous\{i:l\}(T.F[T])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_13-PM-04_10_18
Last ObjectModification: 2015_12_26-AM-11_22_14

Theory : subtype_1


Home Index