Nuprl Lemma : term-bts_wf
∀[opr:Type]. ∀[t:term(opr)].  term-bts(t) ∈ bound-term(opr) List supposing ¬↑isvarterm(t)
Proof
Definitions occuring in Statement : 
term-bts: term-bts(t), 
bound-term: bound-term(opr), 
isvarterm: isvarterm(t), 
term: term(opr), 
list: T List, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
coterm-fun: coterm-fun(opr;T), 
isvarterm: isvarterm(t), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
not: ¬A, 
implies: P ⇒ Q, 
true: True, 
false: False, 
bfalse: ff, 
term-bts: term-bts(t), 
outr: outr(x), 
pi2: snd(t), 
bound-term: bound-term(opr)
Lemmas referenced : 
term-ext, 
ext-eq_inversion, 
term_wf, 
coterm-fun_wf, 
subtype_rel_weakening, 
istype-assert, 
isvarterm_wf, 
istype-void, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
promote_hyp, 
hypothesis_subsumption, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].    term-bts(t)  \mmember{}  bound-term(opr)  List  supposing  \mneg{}\muparrow{}isvarterm(t)
Date html generated:
2020_05_19-PM-09_53_56
Last ObjectModification:
2020_03_09-PM-04_08_26
Theory : terms
Home
Index