Nuprl Lemma : mrec-lt_transitivity
∀[L:MutualRectypeSpec]. ∀[x,y,z:mobj(L)].  (x < y ⇒ y < z ⇒ x < z)
Proof
Definitions occuring in Statement : 
mrec-lt: x < y, 
mobj: mobj(L), 
mrec_spec: MutualRectypeSpec, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
mrec-lt: x < y, 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]), 
member: t ∈ T, 
prop: ℙ, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
mrec: mrec(L;i), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
mobj: mobj(L), 
mkinds: mKinds, 
uimplies: b supposing a, 
prec: prec(lbl,p.a[lbl; p];i)
Lemmas referenced : 
mrec-lt_wf, 
mobj_wf, 
mrec_spec_wf, 
mobj-ext, 
rel_plus_transitivity, 
mrec_wf, 
prec_sub_wf, 
mrec-spec_wf, 
istype-atom, 
subtype_rel_self, 
subtype_rel-equal, 
mtype_wf, 
mtype-sqequal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
productElimination, 
sqequalRule, 
productEquality, 
atomEquality, 
Error :lambdaEquality_alt, 
applyEquality, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
Error :dependent_pairEquality_alt, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[x,y,z:mobj(L)].    (x  <  y  {}\mRightarrow{}  y  <  z  {}\mRightarrow{}  x  <  z)
Date html generated:
2019_06_20-PM-02_15_47
Last ObjectModification:
2019_02_26-AM-11_39_05
Theory : tuples
Home
Index