Nuprl Lemma : decidable__equal_union
∀[A,B:Type]. ((∀x,y:A. Dec(x = y ∈ A))
⇒ (∀u,v:B. Dec(u = v ∈ B))
⇒ (∀x,y:A + B. Dec(x = y ∈ (A + B))))
Proof
Definitions occuring in Statement :
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
decidable: Dec(P)
,
or: P ∨ Q
,
guard: {T}
,
not: ¬A
,
false: False
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
true: True
Lemmas referenced :
all_wf,
decidable_wf,
equal_wf,
not_wf,
subtype_base_sq,
int_subtype_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
unionElimination,
thin,
unionEquality,
cumulativity,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
sqequalRule,
lambdaEquality,
hypothesis,
universeEquality,
dependent_functionElimination,
inlFormation,
inlEquality,
hyp_replacement,
equalitySymmetry,
Error :applyLambdaEquality,
inrFormation,
independent_functionElimination,
voidElimination,
because_Cache,
applyEquality,
natural_numberEquality,
instantiate,
intEquality,
independent_isectElimination,
equalityTransitivity,
promote_hyp,
inrEquality
Latex:
\mforall{}[A,B:Type]. ((\mforall{}x,y:A. Dec(x = y)) {}\mRightarrow{} (\mforall{}u,v:B. Dec(u = v)) {}\mRightarrow{} (\mforall{}x,y:A + B. Dec(x = y)))
Date html generated:
2016_10_21-AM-09_36_05
Last ObjectModification:
2016_07_12-AM-05_00_04
Theory : union
Home
Index