Nuprl Lemma : bag-all_wf
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  (bag-all(x.p[x];bs) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bag-all: bag-all(x.p[x];bs), 
bag: bag(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag-all: bag-all(x.p[x];bs), 
so_lambda: λ2x y.t[x; y], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
comm: Comm(T;op), 
infix_ap: x f y, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
assoc: Assoc(T;op), 
top: Top, 
uiff: uiff(P;Q), 
so_apply: x[s]
Lemmas referenced : 
bag-reduce_wf, 
bool_wf, 
btrue_wf, 
equal_wf, 
squash_wf, 
true_wf, 
band_commutes, 
iff_weakening_equal, 
band_assoc, 
eqtt_to_assert, 
bag-map_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
voidEquality, 
cumulativity, 
functionExtensionality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    (bag-all(x.p[x];bs)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-08_52_13
Last ObjectModification:
2017_07_26-PM-04_33_53
Theory : bags
Home
Index