Step
*
2
1
1
1
1
of Lemma
bag-intersection
1. n : ℕ
2. m : ℕ
3. p : ℕ
4. q : ℕ
5. f : ℕp + q ⟶ ℕn + m
6. Inj(ℕp + q;ℕn + m;f)
7. (p + q) = (n + m) ∈ ℤ
8. m < n
9. q < p
10. ∀i:ℕp. (n ≤ f[i])
⊢ False
BY
{ Assert ⌜Inj(ℕp;{n..n + m-};f)⌝⋅ }
1
.....assertion.....
1. n : ℕ
2. m : ℕ
3. p : ℕ
4. q : ℕ
5. f : ℕp + q ⟶ ℕn + m
6. Inj(ℕp + q;ℕn + m;f)
7. (p + q) = (n + m) ∈ ℤ
8. m < n
9. q < p
10. ∀i:ℕp. (n ≤ f[i])
⊢ Inj(ℕp;{n..n + m-};f)
2
1. n : ℕ
2. m : ℕ
3. p : ℕ
4. q : ℕ
5. f : ℕp + q ⟶ ℕn + m
6. Inj(ℕp + q;ℕn + m;f)
7. (p + q) = (n + m) ∈ ℤ
8. m < n
9. q < p
10. ∀i:ℕp. (n ≤ f[i])
11. Inj(ℕp;{n..n + m-};f)
⊢ False
Latex:
Latex:
1. n : \mBbbN{}
2. m : \mBbbN{}
3. p : \mBbbN{}
4. q : \mBbbN{}
5. f : \mBbbN{}p + q {}\mrightarrow{} \mBbbN{}n + m
6. Inj(\mBbbN{}p + q;\mBbbN{}n + m;f)
7. (p + q) = (n + m)
8. m < n
9. q < p
10. \mforall{}i:\mBbbN{}p. (n \mleq{} f[i])
\mvdash{} False
By
Latex:
Assert \mkleeneopen{}Inj(\mBbbN{}p;\{n..n + m\msupminus{}\};f)\mkleeneclose{}\mcdot{}
Home
Index