Nuprl Lemma : bag-max_wf
∀[A:Type]. ∀[f:A ⟶ ℤ]. ∀[bs:bag(A)].  bag-max(f;bs) ∈ ℤ supposing 0 < #(bs)
Proof
Definitions occuring in Statement : 
bag-max: bag-max(f;bs), 
bag-size: #(bs), 
bag: bag(T), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bag-max: bag-max(f;bs), 
subtype_rel: A ⊆r B, 
nat: ℕ
Lemmas referenced : 
imax-bag_wf, 
bag-map_wf, 
bag-size-map, 
istype-less_than, 
bag-size_wf, 
bag_wf, 
istype-int, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
intEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
Error :memTop, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[bs:bag(A)].    bag-max(f;bs)  \mmember{}  \mBbbZ{}  supposing  0  <  \#(bs)
 Date html generated: 
2020_05_20-AM-08_02_09
 Last ObjectModification: 
2019_12_31-PM-06_32_14
Theory : bags
Home
Index