Nuprl Lemma : bag-subtype
∀[A:Type]. ∀b:bag(A). (b ∈ bag({x:A| x ↓∈ b} ))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
bag: bag(T)
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
bag-member: x ↓∈ bs
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
bag_wf, 
bag-member_wf, 
list_wf, 
permutation_wf, 
equal_wf, 
equal-wf-base, 
list-subtype, 
l_member_wf, 
list-subtype-bag, 
subtype_rel_list_set, 
permutation-strong-subtype, 
strong-subtype-set2, 
quotient-member-eq, 
permutation-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
lambdaEquality, 
axiomEquality, 
universeEquality, 
applyEquality, 
independent_isectElimination, 
dependent_pairFormation, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
setElimination
Latex:
\mforall{}[A:Type].  \mforall{}b:bag(A).  (b  \mmember{}  bag(\{x:A|  x  \mdownarrow{}\mmember{}  b\}  ))
Date html generated:
2017_10_01-AM-08_56_26
Last ObjectModification:
2017_07_26-PM-04_38_48
Theory : bags
Home
Index