Nuprl Lemma : bag-subtype

[A:Type]. ∀b:bag(A). (b ∈ bag({x:A| x ↓∈ b} ))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] bag: bag(T) prop: quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q subtype_rel: A ⊆B uimplies: supposing a bag-member: x ↓∈ bs exists: x:A. B[x] squash: T so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  bag_wf bag-member_wf list_wf permutation_wf equal_wf equal-wf-base list-subtype l_member_wf list-subtype-bag subtype_rel_list_set permutation-strong-subtype strong-subtype-set2 quotient-member-eq permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin setEquality cumulativity hypothesisEquality sqequalRule hypothesis pertypeElimination productElimination equalityTransitivity equalitySymmetry because_Cache rename dependent_functionElimination independent_functionElimination productEquality lambdaEquality axiomEquality universeEquality applyEquality independent_isectElimination dependent_pairFormation independent_pairFormation imageMemberEquality baseClosed setElimination

Latex:
\mforall{}[A:Type].  \mforall{}b:bag(A).  (b  \mmember{}  bag(\{x:A|  x  \mdownarrow{}\mmember{}  b\}  ))



Date html generated: 2017_10_01-AM-08_56_26
Last ObjectModification: 2017_07_26-PM-04_38_48

Theory : bags


Home Index