Nuprl Lemma : bag_to_squash_list
∀[T:Type]. ∀[b:bag(T)].  (↓∃L:T List. (b = L ∈ bag(T)))
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag: bag(T)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
Lemmas referenced : 
squash_wf, 
exists_wf, 
list_wf, 
equal_wf, 
bag_wf, 
list-subtype-bag, 
permutation_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
imageElimination, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (\mdownarrow{}\mexists{}L:T  List.  (b  =  L))
Date html generated:
2017_10_01-AM-08_44_54
Last ObjectModification:
2017_07_26-PM-04_30_25
Theory : bags
Home
Index