Nuprl Lemma : cons-bag_wf

[T:Type]. ∀[x:T]. ∀[b:bag(T)].  (x.b ∈ bag(T))


Proof




Definitions occuring in Statement :  cons-bag: x.b bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a cons-bag: x.b iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] cand: c∧ B top: Top prop: append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list_wf quotient-member-eq permutation_wf permutation-equiv cons_wf permutation-cons nil_wf nil-append equal_wf append_wf length_wf length_of_cons_lemma list_ind_nil_lemma exists_wf length-append equal-wf-base bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination cumulativity hypothesisEquality lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination dependent_pairFormation isect_memberEquality voidElimination voidEquality independent_pairFormation productEquality applyLambdaEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (x.b  \mmember{}  bag(T))



Date html generated: 2017_10_01-AM-08_44_56
Last ObjectModification: 2017_07_26-PM-04_30_26

Theory : bags


Home Index