Nuprl Lemma : cons-bag_wf
∀[T:Type]. ∀[x:T]. ∀[b:bag(T)].  (x.b ∈ bag(T))
Proof
Definitions occuring in Statement : 
cons-bag: x.b
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
cons-bag: x.b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
top: Top
, 
prop: ℙ
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
cons_wf, 
permutation-cons, 
nil_wf, 
nil-append, 
equal_wf, 
append_wf, 
length_wf, 
length_of_cons_lemma, 
list_ind_nil_lemma, 
exists_wf, 
length-append, 
equal-wf-base, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaFormation, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productEquality, 
applyLambdaEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (x.b  \mmember{}  bag(T))
Date html generated:
2017_10_01-AM-08_44_56
Last ObjectModification:
2017_07_26-PM-04_30_26
Theory : bags
Home
Index