Nuprl Lemma : bag-ordering-wellfounded
∀p:ℕ
  ∀[T:Type]
    (T ~ ℕp
    ⇒ (∀[R:bag(T) ⟶ bag(T) ⟶ ℙ]
          (Trans(bag(T);a,b.R[a;b])
          ⇒ (∀a,b:bag(T).  Dec(R[a;b]))
          ⇒ (∀a,b:bag(T).  (sub-bag(T;a;b) ⇒ (¬R[b;a])))
          ⇒ WellFnd{i}(bag(T);a,b.R[a;b]))))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs), 
bag: bag(T), 
equipollent: A ~ B, 
trans: Trans(T;x,y.E[x; y]), 
int_seg: {i..j-}, 
nat: ℕ, 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
infix_ap: x f y, 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
nat: ℕ, 
trans: Trans(T;x,y.E[x; y]), 
no-descending-chain: no-descending-chain(T;<), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A
Lemmas referenced : 
no-descending-chain-implies-wellfounded, 
bag_wf, 
all_wf, 
sub-bag_wf, 
not_wf, 
decidable_wf, 
trans_wf, 
equipollent_wf, 
int_seg_wf, 
nat_wf, 
bag-dickson-lemma, 
int_seg_subtype_nat, 
false_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
productElimination, 
dependent_pairFormation, 
independent_isectElimination, 
independent_pairFormation
Latex:
\mforall{}p:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}p
        {}\mRightarrow{}  (\mforall{}[R:bag(T)  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  \mBbbP{}]
                    (Trans(bag(T);a,b.R[a;b])
                    {}\mRightarrow{}  (\mforall{}a,b:bag(T).    Dec(R[a;b]))
                    {}\mRightarrow{}  (\mforall{}a,b:bag(T).    (sub-bag(T;a;b)  {}\mRightarrow{}  (\mneg{}R[b;a])))
                    {}\mRightarrow{}  WellFnd\{i\}(bag(T);a,b.R[a;b]))))
Date html generated:
2016_05_15-PM-08_10_03
Last ObjectModification:
2015_12_27-PM-04_12_25
Theory : bags_2
Home
Index