Step
*
1
1
of Lemma
compact-dCCC
1. K : Type
2. k : K
3. compact-type(K)
4. R : ā ā¶ K ā¶ š¹
5. d : ān:ā. ((ām:K. (Ā¬ā(R n m))) āØ (ām:K. (ā(R n m))))
6. ān:ā. (ā(R n case d n of inl(p) => fst(p) | inr(_) => k))
ā¢ ān:ā. ām:K. (ā(R n m))
BY
{ (ParallelLast THEN MoveToConcl (-1) THEN (GenConclTerm ād nāā
THENA Auto) THEN D -2 THEN Reduce 0) }
1
1. K : Type
2. k : K
3. compact-type(K)
4. R : ā ā¶ K ā¶ š¹
5. d : ān:ā. ((ām:K. (Ā¬ā(R n m))) āØ (ām:K. (ā(R n m))))
6. n : ā
7. x : ām:K. (Ā¬ā(R n m))
8. (d n) = (inl x) ā ((ām:K. (Ā¬ā(R n m))) āØ (ām:K. (ā(R n m))))
ā¢ (ā(R n (fst(x))))
ā (ām:K. (ā(R n m)))
2
1. K : Type
2. k : K
3. compact-type(K)
4. R : ā ā¶ K ā¶ š¹
5. d : ān:ā. ((ām:K. (Ā¬ā(R n m))) āØ (ām:K. (ā(R n m))))
6. n : ā
7. y : ām:K. (ā(R n m))
8. (d n) = (inr y ) ā ((ām:K. (Ā¬ā(R n m))) āØ (ām:K. (ā(R n m))))
ā¢ (ā(R n k))
ā (ām:K. (ā(R n m)))
Latex:
Latex:
1. K : Type
2. k : K
3. compact-type(K)
4. R : \mBbbN{} {}\mrightarrow{} K {}\mrightarrow{} \mBbbB{}
5. d : \mforall{}n:\mBbbN{}. ((\mexists{}m:K. (\mneg{}\muparrow{}(R n m))) \mvee{} (\mforall{}m:K. (\muparrow{}(R n m))))
6. \mexists{}n:\mBbbN{}. (\muparrow{}(R n case d n of inl(p) => fst(p) | inr($_{}$) => k))
\mvdash{} \mexists{}n:\mBbbN{}. \mforall{}m:K. (\muparrow{}(R n m))
By
Latex:
(ParallelLast THEN MoveToConcl (-1) THEN (GenConclTerm \mkleeneopen{}d n\mkleeneclose{}\mcdot{} THENA Auto) THEN D -2 THEN Reduce 0)
Home
Index