Step
*
of Lemma
nat-inf-attach-unit
∀F:ℕ ⟶ Type. ∃G:ℕ∞ ⟶ Type. ((∀n:ℕ. G n∞ ~ F n) ∧ G ∞ ~ ℕ1)
BY
{ (Auto THEN With ⌜λu.(n:{n:ℕ| u = n∞ ∈ ℕ∞} ⟶ (F n))⌝ (D 0)⋅ THEN Auto) }
1
1. F : ℕ ⟶ Type
2. n : ℕ
⊢ (λu.(n:{n:ℕ| u = n∞ ∈ ℕ∞} ⟶ (F n))) n∞ ~ F n
2
1. F : ℕ ⟶ Type
2. ∀n:ℕ. (λu.(n:{n:ℕ| u = n∞ ∈ ℕ∞} ⟶ (F n))) n∞ ~ F n
⊢ (λu.(n:{n:ℕ| u = n∞ ∈ ℕ∞} ⟶ (F n))) ∞ ~ ℕ1
Latex:
Latex:
\mforall{}F:\mBbbN{} {}\mrightarrow{} Type. \mexists{}G:\mBbbN{}\minfty{} {}\mrightarrow{} Type. ((\mforall{}n:\mBbbN{}. G n\minfty{} \msim{} F n) \mwedge{} G \minfty{} \msim{} \mBbbN{}1)
By
Latex:
(Auto THEN With \mkleeneopen{}\mlambda{}u.(n:\{n:\mBbbN{}| u = n\minfty{}\} {}\mrightarrow{} (F n))\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
Home
Index