Nuprl Lemma : atmFrcPersistent_wf
∀K:dl_KS. ∀i:worlds(K). ∀a:ℕ.
  (atmFrcPersistent(K;i;a) ∈ atmFrc_prop(K;a;i) ⇒ (∀j:worlds(K). (iRj ⇒ atmFrc_prop(K;a;j))))
Proof
Definitions occuring in Statement : 
atmFrcPersistent: atmFrcPersistent(k;i;a), 
dl_KS: dl_KS, 
atmFrc_prop: atmFrc_prop(k;a;s), 
KrRel: sRt, 
worlds: worlds(k), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
atmFrcPersistent: atmFrcPersistent(k;i;a), 
dl_KS: dl_KS, 
record+: record+, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q
Lemmas referenced : 
subtype_rel_self, 
worlds_wf, 
KrRel_wf, 
nat_wf, 
atmFrc_prop_wf, 
istype-nat, 
dl_KS_subtype, 
dl_KS_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
functionExtensionality, 
universeIsType
Latex:
\mforall{}K:dl\_KS.  \mforall{}i:worlds(K).  \mforall{}a:\mBbbN{}.
    (atmFrcPersistent(K;i;a)  \mmember{}  atmFrc\_prop(K;a;i)  {}\mRightarrow{}  (\mforall{}j:worlds(K).  (iRj  {}\mRightarrow{}  atmFrc\_prop(K;a;j))))
Date html generated:
2020_05_20-AM-09_01_39
Last ObjectModification:
2019_11_27-PM-02_10_30
Theory : dynamic!logic
Home
Index