Nuprl Lemma : dl-box-comp
∀a,b:Prog. ∀phi:Prop.  ([(a;b)] phi ⇐⇒ [a] [b] phi)
Proof
Definitions occuring in Statement : 
dl-equiv: (phi ⇐⇒ psi), 
dl-box: [x1] x, 
dl-comp: (x1;x), 
dl-prop: Prop, 
dl-prog: Prog, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
dl-equiv: (phi ⇐⇒ psi), 
and: P ∧ Q, 
dl-valid: |= phi, 
dl-prop-sem: [|phi|], 
dl-sem: dl-sem(K;n.R[n];m.P[m]), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
top: Top, 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
dl-prog-sem: [|alpha|], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
dl-ind-dl-implies, 
istype-void, 
dl-ind-dl-box, 
dl-ind-dl-comp, 
dl-prog-sem_wf, 
istype-nat, 
subtype_rel_self, 
dl-prop-sem_wf, 
istype-universe, 
dl-prop_wf, 
dl-prog_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
dependent_pairFormation_alt, 
productIsType, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
instantiate, 
universeEquality, 
because_Cache, 
functionIsType, 
productElimination, 
inhabitedIsType
Latex:
\mforall{}a,b:Prog.  \mforall{}phi:Prop.    ([(a;b)]  phi  \mLeftarrow{}{}\mRightarrow{}  [a]  [b]  phi)
Date html generated:
2019_10_15-AM-11_44_35
Last ObjectModification:
2019_03_27-AM-00_37_25
Theory : dynamic!logic
Home
Index