Nuprl Lemma : dl-valid-trivial
∀phi:Prop. |= phi ⇒ phi
Proof
Definitions occuring in Statement : 
dl-valid: |= phi, 
dl-implies: x1 ⇒ x, 
dl-prop: Prop, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
dl-valid: |= phi, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
dl-prop-sem: [|phi|], 
dl-sem: dl-sem(K;n.R[n];m.P[m]), 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-nat, 
istype-universe, 
dl-prop_wf, 
dl-ind-dl-implies, 
istype-void, 
dl-prop-sem_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
hypothesisEquality, 
functionIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
universeEquality, 
because_Cache, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
lambdaEquality_alt
Latex:
\mforall{}phi:Prop.  |=  phi  {}\mRightarrow{}  phi
Date html generated:
2019_10_15-AM-11_44_17
Last ObjectModification:
2019_03_26-AM-11_50_15
Theory : dynamic!logic
Home
Index