Nuprl Lemma : dl_forces_wf
∀[K:dl_KS]. ∀[a:Prop]. ∀[s:worlds(K)]. ∀[pos:𝔹].  (dl_forces(K;pos;a;s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dl_forces: dl_forces(K;pos;a;s), 
dl_KS: dl_KS, 
worlds: worlds(k), 
dl-prop: Prop, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ, 
subtype_rel: A ⊆r B, 
dl_forces: dl_forces(K;pos;a;s), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
so_apply: x[s], 
so_lambda: so_lambda4, 
exists: ∃x:A. B[x], 
so_apply: x[s1;s2;s3;s4], 
or: P ∨ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
dl-kind: dl-kind(d), 
mobj-kind: mobj-kind(x), 
pi1: fst(t), 
dl-prop-obj: prop(x), 
bfalse: ff
Lemmas referenced : 
dl_KS_wf, 
dl-prop_wf, 
dl_KS_subtype, 
bool_wf, 
subtype-TYPE, 
worlds_wf, 
dl-ind_wf_definition, 
KrRel_wf, 
atmFrc_prog_wf, 
istype-nat, 
subtype_rel_self, 
dl-prog_wf, 
rel_star_wf, 
btrue_wf, 
equal_wf, 
atmFrc_prop_wf, 
ifthenelse_wf, 
false_wf, 
true_wf, 
bfalse_wf, 
dl-prop-obj_wf
Rules used in proof : 
universeIsType, 
instantiate, 
universeEquality, 
sqequalRule, 
hypothesis, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality_alt, 
productEquality, 
inhabitedIsType, 
functionIsType, 
unionEquality, 
dependent_functionElimination
Latex:
\mforall{}[K:dl\_KS].  \mforall{}[a:Prop].  \mforall{}[s:worlds(K)].  \mforall{}[pos:\mBbbB{}].    (dl\_forces(K;pos;a;s)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-09_01_48
Last ObjectModification:
2020_01_17-PM-02_25_04
Theory : dynamic!logic
Home
Index