Step
*
1
of Lemma
Euler-Fermat
1. n : {2...}
2. a : ℕ+
3. CoPrime(n,a)
4. Πx ∈ map(λi.(ai mod n);residues-mod(n)). x = Πx ∈ residues-mod(n). x ∈ ℤ
5. Πx ∈ residues-mod(n). (ax mod n) = Πx ∈ residues-mod(n). x ∈ ℤ
⊢ a^totient(n) ≡ 1 mod n
BY
{ Assert ⌜(Πx ∈ residues-mod(n). x * a^totient(n)) ≡ (Πx ∈ residues-mod(n). x * 1) mod n⌝⋅ }
1
.....assertion.....
1. n : {2...}
2. a : ℕ+
3. CoPrime(n,a)
4. Πx ∈ map(λi.(ai mod n);residues-mod(n)). x = Πx ∈ residues-mod(n). x ∈ ℤ
5. Πx ∈ residues-mod(n). (ax mod n) = Πx ∈ residues-mod(n). x ∈ ℤ
⊢ (Πx ∈ residues-mod(n). x * a^totient(n)) ≡ (Πx ∈ residues-mod(n). x * 1) mod n
2
1. n : {2...}
2. a : ℕ+
3. CoPrime(n,a)
4. Πx ∈ map(λi.(ai mod n);residues-mod(n)). x = Πx ∈ residues-mod(n). x ∈ ℤ
5. Πx ∈ residues-mod(n). (ax mod n) = Πx ∈ residues-mod(n). x ∈ ℤ
6. (Πx ∈ residues-mod(n). x * a^totient(n)) ≡ (Πx ∈ residues-mod(n). x * 1) mod n
⊢ a^totient(n) ≡ 1 mod n
Latex:
Latex:
1. n : \{2...\}
2. a : \mBbbN{}\msupplus{}
3. CoPrime(n,a)
4. \mPi{}x \mmember{} map(\mlambda{}i.(ai mod n);residues-mod(n)). x = \mPi{}x \mmember{} residues-mod(n). x
5. \mPi{}x \mmember{} residues-mod(n). (ax mod n) = \mPi{}x \mmember{} residues-mod(n). x
\mvdash{} a\^{}totient(n) \mequiv{} 1 mod n
By
Latex:
Assert \mkleeneopen{}(\mPi{}x \mmember{} residues-mod(n). x * a\^{}totient(n)) \mequiv{} (\mPi{}x \mmember{} residues-mod(n). x * 1) mod n\mkleeneclose{}\mcdot{}
Home
Index