Nuprl Lemma : Girard-theorem

¬(Type ∈ Type)


Proof




Definitions occuring in Statement :  not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  not: ¬A implies:  Q WFO: WFO{i:l}() member: t ∈ T prop: uall: [x:A]. B[x] max-WO: max-WO{i:l}() order-type-less: order-type-less() spreadn: spread3 so_lambda: λ2x.t[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] infix_ap: y so_apply: x[s] all: x:A. B[x] WFTRO: WFTRO{i:l}() max-WFTO: max-WFTO{i:l}() exists: x:A. B[x] subtype_rel: A ⊆B DCC: DCC(T;<) false: False uimplies: supposing a top: Top
Lemmas referenced :  DCC_wf exists_wf order-preserving_wf infix_ap_wf istype-universe all_wf DCC-order-type_wf order-type-less-maximal-ext ot-less-trans_wf trans_wf order-type-less_wf subtype_rel_self DCC-order-type-less-ext nat_wf WFO_wf istype-top subtype_rel_dep_function top_wf istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut productEquality sqequalHypSubstitution equalityTransitivity hypothesis equalitySymmetry functionEquality hypothesisEquality because_Cache introduction extract_by_obid isectElimination thin dependent_pairEquality_alt sqequalRule lambdaEquality_alt productElimination inhabitedIsType applyEquality functionIsType productIsType universeIsType rename dependent_functionElimination independent_pairEquality dependent_pairFormation_alt instantiate universeEquality functionExtensionality independent_functionElimination voidElimination cumulativity independent_isectElimination isect_memberEquality_alt equalityIsType4 baseClosed

Latex:
\mneg{}(Type  \mmember{}  Type)



Date html generated: 2019_10_15-AM-11_10_59
Last ObjectModification: 2018_10_10-PM-02_05_09

Theory : general


Home Index