Nuprl Lemma : Girard-theorem
¬(Type ∈ Type)
Proof
Definitions occuring in Statement : 
not: ¬A
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
WFO: WFO{i:l}()
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
max-WO: max-WO{i:l}()
, 
order-type-less: order-type-less()
, 
spreadn: spread3, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
WFTRO: WFTRO{i:l}()
, 
max-WFTO: max-WFTO{i:l}()
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
DCC: DCC(T;<)
, 
false: False
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
DCC_wf, 
exists_wf, 
order-preserving_wf, 
infix_ap_wf, 
istype-universe, 
all_wf, 
DCC-order-type_wf, 
order-type-less-maximal-ext, 
ot-less-trans_wf, 
trans_wf, 
order-type-less_wf, 
subtype_rel_self, 
DCC-order-type-less-ext, 
nat_wf, 
WFO_wf, 
istype-top, 
subtype_rel_dep_function, 
top_wf, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
productEquality, 
sqequalHypSubstitution, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
hypothesisEquality, 
because_Cache, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
dependent_pairEquality_alt, 
sqequalRule, 
lambdaEquality_alt, 
productElimination, 
inhabitedIsType, 
applyEquality, 
functionIsType, 
productIsType, 
universeIsType, 
rename, 
dependent_functionElimination, 
independent_pairEquality, 
dependent_pairFormation_alt, 
instantiate, 
universeEquality, 
functionExtensionality, 
independent_functionElimination, 
voidElimination, 
cumulativity, 
independent_isectElimination, 
isect_memberEquality_alt, 
equalityIsType4, 
baseClosed
Latex:
\mneg{}(Type  \mmember{}  Type)
Date html generated:
2019_10_15-AM-11_10_59
Last ObjectModification:
2018_10_10-PM-02_05_09
Theory : general
Home
Index