Step
*
1
of Lemma
accum_split_prefix2
1. A : Type
2. T : Type
3. x : A
4. g : (T List × A) ⟶ A
5. f : (T List × A) ⟶ 𝔹
6. ZZ : (T List × A) List
7. Z : T List × A
8. X : T List × A
9. accum_split(g;x;f;[]) = <ZZ @ [Z], X> ∈ ((T List × A) List × T List × A)
⊢ accum_split(g;x;f;concat(map(λp.(fst(p));ZZ @ [Z]))) = <ZZ, Z> ∈ ((T List × A) List × T List × A)
BY
{ ((RepUR ``accum_split`` -1 THEN Auto) THEN AutoSimpHyp Auto (-1) THEN AutoSimpHyp Auto (-2) THEN Auto) }
Latex:
Latex:
1. A : Type
2. T : Type
3. x : A
4. g : (T List \mtimes{} A) {}\mrightarrow{} A
5. f : (T List \mtimes{} A) {}\mrightarrow{} \mBbbB{}
6. ZZ : (T List \mtimes{} A) List
7. Z : T List \mtimes{} A
8. X : T List \mtimes{} A
9. accum\_split(g;x;f;[]) = <ZZ @ [Z], X>
\mvdash{} accum\_split(g;x;f;concat(map(\mlambda{}p.(fst(p));ZZ @ [Z]))) = <ZZ, Z>
By
Latex:
((RepUR ``accum\_split`` -1 THEN Auto)
THEN AutoSimpHyp Auto (-1)
THEN AutoSimpHyp Auto (-2)
THEN Auto)
Home
Index