Step
*
1
1
1
of Lemma
apply-nth_wf
.....subterm..... T:t
1:n
1. T : Type
2. n : ℤ
3. 0 < n
4. ∀A:ℕ(n - 1) + 1 ⟶ Type. ∀x:A[n - 1].
(primrec(n - 1;λf.(f x);λi,H,f. (H o f)) ∈ primrec((n - 1) + 1;T;λi,t. ((A (((n - 1) + 1) - 1 - i)) ⟶ t))
⟶ primrec(n - 1;T;λi,t. ((A (n - 1 - 1 - i)) ⟶ t)))
5. ¬((n + 1) = 0 ∈ ℤ)
6. ¬(n = 0 ∈ ℤ)
7. A : ℕn + 1 ⟶ Type
8. x : A[n]
9. f : (A (n - n)) ⟶ primrec(n;T;λi,t. ((A (n - i)) ⟶ t))
⊢ primrec(n - 1;λf.(f x);λi,H,f. (H o f)) ∈ primrec(n;T;λi,t. ((A (n - i)) ⟶ t)) ⟶ primrec(n - 1;T;λi,t. ((A (n - 1 - \000Ci)) ⟶ t))
BY
{ ((InstHyp [⌜λ2k.A[k + 1]⌝;⌜x⌝] 4⋅ THENA Auto) THEN InferEqualType THEN Auto) }
1
1. T : Type
2. n : ℤ
3. 0 < n
4. ∀A:ℕ(n - 1) + 1 ⟶ Type. ∀x:A[n - 1].
(primrec(n - 1;λf.(f x);λi,H,f. (H o f)) ∈ primrec((n - 1) + 1;T;λi,t. ((A (((n - 1) + 1) - 1 - i)) ⟶ t))
⟶ primrec(n - 1;T;λi,t. ((A (n - 1 - 1 - i)) ⟶ t)))
5. ¬((n + 1) = 0 ∈ ℤ)
6. ¬(n = 0 ∈ ℤ)
7. A : ℕn + 1 ⟶ Type
8. x : A[n]
9. f : (A (n - n)) ⟶ primrec(n;T;λi,t. ((A (n - i)) ⟶ t))
10. primrec(n - 1;λf.(f x);λi,H,f. (H o f)) ∈ primrec((n - 1) + 1;T;λi,t. (A[(((n - 1) + 1) - 1 - i) + 1] ⟶ t))
⟶ primrec(n - 1;T;λi,t. (A[(n - 1 - 1 - i) + 1] ⟶ t))
⊢ (primrec((n - 1) + 1;T;λi,t. (A[(((n - 1) + 1) - 1 - i) + 1] ⟶ t)) ⟶ primrec(n - 1;T;λi,t. (A[(n - 1 - 1 - i) + 1] ─\000C→ t)))
= (primrec(n;T;λi,t. ((A (n - i)) ⟶ t)) ⟶ primrec(n - 1;T;λi,t. ((A (n - 1 - i)) ⟶ t)))
∈ Type
Latex:
Latex:
.....subterm..... T:t
1:n
1. T : Type
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}A:\mBbbN{}(n - 1) + 1 {}\mrightarrow{} Type. \mforall{}x:A[n - 1].
(primrec(n - 1;\mlambda{}f.(f x);\mlambda{}i,H,f. (H o f))
\mmember{} primrec((n - 1) + 1;T;\mlambda{}i,t. ((A (((n - 1) + 1) - 1 - i)) {}\mrightarrow{} t)) {}\mrightarrow{} primrec(n - 1;T;\mlambda{}i,t. ((A\000C
(n
- 1
- 1
- i))
{}\mrightarrow{} t)))
5. \mneg{}((n + 1) = 0)
6. \mneg{}(n = 0)
7. A : \mBbbN{}n + 1 {}\mrightarrow{} Type
8. x : A[n]
9. f : (A (n - n)) {}\mrightarrow{} primrec(n;T;\mlambda{}i,t. ((A (n - i)) {}\mrightarrow{} t))
\mvdash{} primrec(n - 1;\mlambda{}f.(f x);\mlambda{}i,H,f. (H o f)) \mmember{} primrec(n;T;\mlambda{}i,t. ((A (n - i)) {}\mrightarrow{} t))
{}\mrightarrow{} primrec(n - 1;T;\mlambda{}i,t. ((A (n - 1 - i)) {}\mrightarrow{} t))
By
Latex:
((InstHyp [\mkleeneopen{}\mlambda{}\msubtwo{}k.A[k + 1]\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}] 4\mcdot{} THENA Auto) THEN InferEqualType THEN Auto)
Home
Index