Step
*
of Lemma
awf-solution_wf
No Annotations
∀[A,I:Type].
∀G:awf-system{i:l}(I;A)
(awf-solution(G) ∈ {s:I ⟶ awf(A)|
(∀i:I. ((s i) = (G s i) ∈ awf(A)))
∧ (∀s':I ⟶ awf(A). ((∀i:I. ((s' i) = (G s' i) ∈ awf(A)))
⇒ (s' = s ∈ (I ⟶ awf(A)))))} )
BY
{ TACTIC:(BasicUniformUnivCD Auto
THEN (D 0 THENA Auto)
THEN Unhide
THEN Subst ⌜awf-solution(G) ~ TERMOF{unique-awf:o, i:l, i:l} G⌝ 0⋅) }
1
.....equality.....
1. A : Type
2. I : Type
3. G : awf-system{i:l}(I;A)@i'
⊢ awf-solution(G) ~ TERMOF{unique-awf:o, i:l, i:l} G
2
1. A : Type
2. I : Type
3. G : awf-system{i:l}(I;A)@i'
⊢ TERMOF{unique-awf:o, i:l, i:l} G ∈ {s:I ⟶ awf(A)|
(∀i:I. ((s i) = (G s i) ∈ awf(A)))
∧ (∀s':I ⟶ awf(A)
((∀i:I. ((s' i) = (G s' i) ∈ awf(A)))
⇒ (s' = s ∈ (I ⟶ awf(A)))))}
Latex:
Latex:
No Annotations
\mforall{}[A,I:Type].
\mforall{}G:awf-system\{i:l\}(I;A)
(awf-solution(G) \mmember{} \{s:I {}\mrightarrow{} awf(A)|
(\mforall{}i:I. ((s i) = (G s i)))
\mwedge{} (\mforall{}s':I {}\mrightarrow{} awf(A). ((\mforall{}i:I. ((s' i) = (G s' i))) {}\mRightarrow{} (s' = s)))\} )
By
Latex:
TACTIC:(BasicUniformUnivCD Auto
THEN (D 0 THENA Auto)
THEN Unhide
THEN Subst \mkleeneopen{}awf-solution(G) \msim{} TERMOF\{unique-awf:o, i:l, i:l\} G\mkleeneclose{} 0\mcdot{})
Home
Index