Step
*
of Lemma
bl-rev-exists-sq
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)} ⟶ 𝔹]. ((∃x∈rev(L).P[x])_b ~ (∃x∈L.P[x])_b)
BY
{ xxx(InductionOnList
THEN Unfolds ``bl-exists bl-rev-exists`` 0
THEN Reduce 0
THEN Try (Folds ``bl-exists bl-rev-exists`` 0)
THEN (D 0 THENA Auto)
THEN Try (Trivial))xxx }
1
1. T : Type
2. u : T
3. v : T List
4. ∀[P:{x:T| (x ∈ v)} ⟶ 𝔹]. ((∃x∈rev(v).P[x])_b ~ (∃x∈v.P[x])_b)
5. P : {x:T| (x ∈ [u / v])} ⟶ 𝔹
⊢ case (∃x∈rev(v).P[x])_b of inl(x) => tt | inr(x) => P[u] ~ P[u] ∨b(∃x∈v.P[x])_b
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[P:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbB{}]. ((\mexists{}x\mmember{}rev(L).P[x])\_b \msim{} (\mexists{}x\mmember{}L.P[x])\_b)
By
Latex:
xxx(InductionOnList
THEN Unfolds ``bl-exists bl-rev-exists`` 0
THEN Reduce 0
THEN Try (Folds ``bl-exists bl-rev-exists`` 0)
THEN (D 0 THENA Auto)
THEN Try (Trivial))xxx
Home
Index