Nuprl Lemma : bool-to-dcdr_wf

[A:Type]. ∀[f:A ⟶ 𝔹]. ∀[x:A].  ({f}b x ∈ Dec(f tt))


Proof




Definitions occuring in Statement :  bool-to-dcdr: {f}b btrue: tt bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bool-to-dcdr: {f}b subtype_rel: A ⊆B all: x:A. B[x] prop:
Lemmas referenced :  bool_wf bool-to-dcdr-aux decidable_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality isect_memberEquality isectElimination thin because_Cache functionEquality extract_by_obid universeEquality applyEquality instantiate lambdaEquality isectEquality cumulativity baseClosed functionExtensionality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].    (\{f\}\msubb{}  x  \mmember{}  Dec(f  x  =  tt))



Date html generated: 2018_05_21-PM-06_29_18
Last ObjectModification: 2018_05_19-PM-04_40_13

Theory : general


Home Index