Step
*
of Lemma
can-apply-mu'
∀[A:Type]. ∀P:A ⟶ ℕ ⟶ 𝔹. ∀d:∀x:A. Dec(∃n:ℕ. (↑(P x n))). ∀x:A. (↑can-apply(mu'(P);x)
⇐⇒ ∃n:ℕ. (↑(P x n)))
BY
{ xxx((UnivCD THENA Auto)
THEN RepUR ``mu\' can-apply`` 0
THEN (Subst' TERMOF{p-mu-decider:o, 1:l, 1:l} ~ TERMOF{p-mu-decider:o, 1:l, i:l} 0
THENL [((RW (SubC (ComputeToC [])) 0) THEN Trivial); Id]
))xxx }
1
1. [A] : Type
2. P : A ⟶ ℕ ⟶ 𝔹
3. d : ∀x:A. Dec(∃n:ℕ. (↑(P x n)))
4. x : A
⊢ ↑isl(fst((TERMOF{p-mu-decider:o, 1:l, i:l} P d x)))
⇐⇒ ∃n:ℕ. (↑(P x n))
Latex:
Latex:
\mforall{}[A:Type]
\mforall{}P:A {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbB{}. \mforall{}d:\mforall{}x:A. Dec(\mexists{}n:\mBbbN{}. (\muparrow{}(P x n))). \mforall{}x:A. (\muparrow{}can-apply(mu'(P);x) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. (\muparrow{}(P x n)))
By
Latex:
xxx((UnivCD THENA Auto)
THEN RepUR ``mu\mbackslash{}' can-apply`` 0
THEN (Subst' TERMOF\{p-mu-decider:o, 1:l, 1:l\} \msim{} TERMOF\{p-mu-decider:o, 1:l, i:l\} 0
THENL [((RW (SubC (ComputeToC [])) 0) THEN Trivial); Id]
))xxx
Home
Index