Step
*
1
of Lemma
div_nat_induction
1. b : {b:ℤ| 1 < b}
2. [P] : ℕ ⟶ ℙ
3. P[0]
4. ∀i:ℕ+. (P[i ÷ b]
⇒ P[i])
5. i : ℕ
6. ∀i1:ℕi. P[i1]
7. ¬(i = 0 ∈ ℤ)
8. j : ℤ
9. j = (i ÷ b) ∈ ℤ
⊢ P[i]
BY
{ (InstHyp [⌜j⌝] (-4)⋅ THEN ElimVar `j' THEN Auto) }
1
1. b : {b:ℤ| 1 < b}
2. P : ℕ ⟶ ℙ
3. P[0]
4. ∀i:ℕ+. (P[i ÷ b]
⇒ P[i])
5. i : ℕ
6. ∀i1:ℕi. P[i1]
7. ¬(i = 0 ∈ ℤ)
8. j : ℤ
9. i ÷ b ∈ ℤ
⊢ i ÷ b ∈ ℕi
Latex:
Latex:
1. b : \{b:\mBbbZ{}| 1 < b\}
2. [P] : \mBbbN{} {}\mrightarrow{} \mBbbP{}
3. P[0]
4. \mforall{}i:\mBbbN{}\msupplus{}. (P[i \mdiv{} b] {}\mRightarrow{} P[i])
5. i : \mBbbN{}
6. \mforall{}i1:\mBbbN{}i. P[i1]
7. \mneg{}(i = 0)
8. j : \mBbbZ{}
9. j = (i \mdiv{} b)
\mvdash{} P[i]
By
Latex:
(InstHyp [\mkleeneopen{}j\mkleeneclose{}] (-4)\mcdot{} THEN ElimVar `j' THEN Auto)
Home
Index