Step
*
2
1
1
of Lemma
do-apply-p-first-disjoint
1. A : Type
2. B : Type
⊢ ∀x:A. ∀f:A ⟶ (B + Top).
((∀f,g∈[]. p-disjoint(A;f;g))
⇒ (f ∈ [])
⇒ (↑can-apply(f;x))
⇒ (hd(filter(λf.can-apply(f;x);[])) = f ∈ (A ⟶ (B + Top))))
BY
{ xxx(Unfold `pairwise` 0 THEN Reduce 0 THEN Auto)xxx }
Latex:
Latex:
1. A : Type
2. B : Type
\mvdash{} \mforall{}x:A. \mforall{}f:A {}\mrightarrow{} (B + Top).
((\mforall{}f,g\mmember{}[]. p-disjoint(A;f;g))
{}\mRightarrow{} (f \mmember{} [])
{}\mRightarrow{} (\muparrow{}can-apply(f;x))
{}\mRightarrow{} (hd(filter(\mlambda{}f.can-apply(f;x);[])) = f))
By
Latex:
xxx(Unfold `pairwise` 0 THEN Reduce 0 THEN Auto)xxx
Home
Index