Nuprl Lemma : exp-fastexp

[i:ℤ]. ∀[n:ℕ].  (i^n i^n)


Proof




Definitions occuring in Statement :  fastexp: i^n exp: i^n nat: uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  guard: {T} sq_type: SQType(T) uimplies: supposing a implies:  Q prop: sq_exists: x:{A| B[x]} so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B fastexp: i^n member: t ∈ T uall: [x:A]. B[x]
Rules used in proof :  independent_isectElimination cumulativity rename setElimination isect_memberEquality sqequalAxiom independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity lambdaFormation because_Cache intEquality isectElimination hypothesisEquality sqequalRule sqequalHypSubstitution lambdaEquality hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \msim{}  i\^{}n)



Date html generated: 2016_07_08-PM-05_05_17
Last ObjectModification: 2016_07_05-PM-02_43_19

Theory : general


Home Index