Nuprl Lemma : exp-fastexp
∀[i:ℤ]. ∀[n:ℕ].  (i^n ~ i^n)
Proof
Definitions occuring in Statement : 
fastexp: i^n, 
exp: i^n, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
guard: {T}, 
sq_type: SQType(T), 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
sq_exists: ∃x:{A| B[x]}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
fastexp: i^n, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Rules used in proof : 
independent_isectElimination, 
cumulativity, 
rename, 
setElimination, 
isect_memberEquality, 
sqequalAxiom, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
lambdaFormation, 
because_Cache, 
intEquality, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \msim{}  i\^{}n)
Date html generated:
2016_07_08-PM-05_05_17
Last ObjectModification:
2016_07_05-PM-02_43_19
Theory : general
Home
Index