Step
*
2
1
of Lemma
expfact_wf
1. m : ℕ+
2. k : ℕ
3. n : ℕ+
4. b : {b:ℕ| n * k^b < (b)!} @i
5. m ≤ b@i
6. ∀d:ℕ. (d < b
⇒ (expfact(b - d;k;n * k^b - d;(b - d)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!} ))
7. expfact(b - b - m;k;n * k^b - b - m;(b - b - m)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!}
⊢ expfact(m;k;n * k^m;(m)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!}
BY
{ Subst ⌜expfact(b - b - m;k;n * k^b - b - m;(b - b - m)!) ~ expfact(m;k;n * k^m;(m)!)⌝ (-1)⋅ }
1
.....equality.....
1. m : ℕ+
2. k : ℕ
3. n : ℕ+
4. b : {b:ℕ| n * k^b < (b)!} @i
5. m ≤ b@i
6. ∀d:ℕ. (d < b
⇒ (expfact(b - d;k;n * k^b - d;(b - d)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!} ))
7. expfact(b - b - m;k;n * k^b - b - m;(b - b - m)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!}
⊢ expfact(b - b - m;k;n * k^b - b - m;(b - b - m)!) ~ expfact(m;k;n * k^m;(m)!)
2
1. m : ℕ+
2. k : ℕ
3. n : ℕ+
4. b : {b:ℕ| n * k^b < (b)!} @i
5. m ≤ b@i
6. ∀d:ℕ. (d < b
⇒ (expfact(b - d;k;n * k^b - d;(b - d)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!} ))
7. expfact(m;k;n * k^m;(m)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!}
⊢ expfact(m;k;n * k^m;(m)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!}
Latex:
Latex:
1. m : \mBbbN{}\msupplus{}
2. k : \mBbbN{}
3. n : \mBbbN{}\msupplus{}
4. b : \{b:\mBbbN{}| n * k\^{}b < (b)!\} @i
5. m \mleq{} b@i
6. \mforall{}d:\mBbbN{}. (d < b {}\mRightarrow{} (expfact(b - d;k;n * k\^{}b - d;(b - d)!) \mmember{} \{b:\mBbbN{}\msupplus{}| (n * k\^{}b) \mleq{} (b)!\} ))
7. expfact(b - b - m;k;n * k\^{}b - b - m;(b - b - m)!) \mmember{} \{b:\mBbbN{}\msupplus{}| (n * k\^{}b) \mleq{} (b)!\}
\mvdash{} expfact(m;k;n * k\^{}m;(m)!) \mmember{} \{b:\mBbbN{}\msupplus{}| (n * k\^{}b) \mleq{} (b)!\}
By
Latex:
Subst \mkleeneopen{}expfact(b - b - m;k;n * k\^{}b - b - m;(b - b - m)!) \msim{} expfact(m;k;n * k\^{}m;(m)!)\mkleeneclose{} (-1)\mcdot{}
Home
Index