Step
*
of Lemma
finite-set-type-cases
∀[T:Type]
∀L:(T ⟶ ℙ) List
∀[P:T ⟶ ℙ]
((∀x:T. Dec(P[x]))
⇒ (∀Q∈L.∀x:T. Dec(Q[x]))
⇒ (∀Q∈L.finite-type({x:T| Q[x]} ))
⇒ (∀x:T. (P[x]
⇒ (∃Q∈L. Q[x])))
⇒ finite-type({x:T| P[x]} ))
BY
{ xxx(Auto THEN RWO "finite-decidable-set" 0 THEN Auto)xxx }
1
1. [T] : Type
2. L : (T ⟶ ℙ) List
3. [P] : T ⟶ ℙ
4. ∀x:T. Dec(P[x])
5. (∀Q∈L.∀x:T. Dec(Q[x]))
6. (∀Q∈L.finite-type({x:T| Q[x]} ))
7. ∀x:T. (P[x]
⇒ (∃Q∈L. Q[x]))
⊢ ∃L:T List. ∀x:T. (P[x]
⇒ (x ∈ L))
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}L:(T {}\mrightarrow{} \mBbbP{}) List
\mforall{}[P:T {}\mrightarrow{} \mBbbP{}]
((\mforall{}x:T. Dec(P[x]))
{}\mRightarrow{} (\mforall{}Q\mmember{}L.\mforall{}x:T. Dec(Q[x]))
{}\mRightarrow{} (\mforall{}Q\mmember{}L.finite-type(\{x:T| Q[x]\} ))
{}\mRightarrow{} (\mforall{}x:T. (P[x] {}\mRightarrow{} (\mexists{}Q\mmember{}L. Q[x])))
{}\mRightarrow{} finite-type(\{x:T| P[x]\} ))
By
Latex:
xxx(Auto THEN RWO "finite-decidable-set" 0 THEN Auto)xxx
Home
Index