Step
*
2
of Lemma
first-iseg
1. [T] : Type
2. [P] : (T List) ⟶ ℙ
3. ∀L:T List. Dec(P[L])
4. n : ℕ
5. L : T List
6. ∀L1:T List
(||L1|| < ||L||
⇒ P[L1]
⇒ (∃L':T List. (L' ≤ L1 ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'
⇒ P[L'']
⇒ (L'' = L' ∈ (T List)))))))
7. ¬↑null(L)
8. P[L]
⊢ ∃L':T List. (L' ≤ L ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'
⇒ P[L'']
⇒ (L'' = L' ∈ (T List)))))
BY
{ xxx(((FLemma `last_lemma` [(-2)]) THENA Auto)
THEN ExRepD
THEN AssertBY ⌜Dec(∃zs:T List. (zs ≤ L' ∧ P[zs]))⌝
(BLemma `decidable-exists-iseg` THEN Auto)⋅
THEN (D (-1)))xxx }
1
1. [T] : Type
2. [P] : (T List) ⟶ ℙ
3. ∀L:T List. Dec(P[L])
4. n : ℕ
5. L : T List
6. ∀L1:T List
(||L1|| < ||L||
⇒ P[L1]
⇒ (∃L':T List. (L' ≤ L1 ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'
⇒ P[L'']
⇒ (L'' = L' ∈ (T List)))))))
7. ¬↑null(L)
8. P[L]
9. L' : T List
10. L = (L' @ [last(L)]) ∈ (T List)
11. ∃zs:T List. (zs ≤ L' ∧ P[zs])
⊢ ∃L':T List. (L' ≤ L ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'
⇒ P[L'']
⇒ (L'' = L' ∈ (T List)))))
2
1. [T] : Type
2. [P] : (T List) ⟶ ℙ
3. ∀L:T List. Dec(P[L])
4. n : ℕ
5. L : T List
6. ∀L1:T List
(||L1|| < ||L||
⇒ P[L1]
⇒ (∃L':T List. (L' ≤ L1 ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'
⇒ P[L'']
⇒ (L'' = L' ∈ (T List)))))))
7. ¬↑null(L)
8. P[L]
9. L' : T List
10. L = (L' @ [last(L)]) ∈ (T List)
11. ¬(∃zs:T List. (zs ≤ L' ∧ P[zs]))
⊢ ∃L':T List. (L' ≤ L ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'
⇒ P[L'']
⇒ (L'' = L' ∈ (T List)))))
Latex:
Latex:
1. [T] : Type
2. [P] : (T List) {}\mrightarrow{} \mBbbP{}
3. \mforall{}L:T List. Dec(P[L])
4. n : \mBbbN{}
5. L : T List
6. \mforall{}L1:T List
(||L1|| < ||L||
{}\mRightarrow{} P[L1]
{}\mRightarrow{} (\mexists{}L':T List. (L' \mleq{} L1 \mwedge{} P[L'] \mwedge{} (\mforall{}L'':T List. (L'' \mleq{} L' {}\mRightarrow{} P[L''] {}\mRightarrow{} (L'' = L'))))))
7. \mneg{}\muparrow{}null(L)
8. P[L]
\mvdash{} \mexists{}L':T List. (L' \mleq{} L \mwedge{} P[L'] \mwedge{} (\mforall{}L'':T List. (L'' \mleq{} L' {}\mRightarrow{} P[L''] {}\mRightarrow{} (L'' = L'))))
By
Latex:
xxx(((FLemma `last\_lemma` [(-2)]) THENA Auto)
THEN ExRepD
THEN AssertBY \mkleeneopen{}Dec(\mexists{}zs:T List. (zs \mleq{} L' \mwedge{} P[zs]))\mkleeneclose{}
(BLemma `decidable-exists-iseg` THEN Auto)\mcdot{}
THEN (D (-1)))xxx
Home
Index