Step
*
3
1
of Lemma
four-squares
1. n : ℕ+
2. m : ℕ+
3. a1 : ℤ
4. b1 : ℤ
5. c1 : ℤ
6. d1 : ℤ
7. n = ((a1 * a1) + (b1 * b1) + (c1 * c1) + (d1 * d1)) ∈ ℤ
8. a : ℤ
9. b : ℤ
10. c : ℤ
11. d : ℤ
12. m = ((a * a) + (b * b) + (c * c) + (d * d)) ∈ ℤ
⊢ ∃a,b,c,d:ℤ. ((n * m) = ((a * a) + (b * b) + (c * c) + (d * d)) ∈ ℤ)
BY
{ (HypSubst' (-1) 0
THEN HypSubst' (-6) 0
THEN (RWO "Euler-four-square-identity" 0 THENA Auto)
THEN GenConclAtAddr [2;2;2;2;2;1;1]
THEN GenConclAtAddr [2;2;2;2;2;2;1;1]
THEN GenConclAtAddr [2;2;2;2;2;2;2;1;1]
THEN GenConclAtAddr [2;2;2;2;2;2;2;2;1]
THEN InstConcl [⌜v⌝;⌜v1⌝;⌜v2⌝;⌜v3⌝]⋅
THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. m : \mBbbN{}\msupplus{}
3. a1 : \mBbbZ{}
4. b1 : \mBbbZ{}
5. c1 : \mBbbZ{}
6. d1 : \mBbbZ{}
7. n = ((a1 * a1) + (b1 * b1) + (c1 * c1) + (d1 * d1))
8. a : \mBbbZ{}
9. b : \mBbbZ{}
10. c : \mBbbZ{}
11. d : \mBbbZ{}
12. m = ((a * a) + (b * b) + (c * c) + (d * d))
\mvdash{} \mexists{}a,b,c,d:\mBbbZ{}. ((n * m) = ((a * a) + (b * b) + (c * c) + (d * d)))
By
Latex:
(HypSubst' (-1) 0
THEN HypSubst' (-6) 0
THEN (RWO "Euler-four-square-identity" 0 THENA Auto)
THEN GenConclAtAddr [2;2;2;2;2;1;1]
THEN GenConclAtAddr [2;2;2;2;2;2;1;1]
THEN GenConclAtAddr [2;2;2;2;2;2;2;1;1]
THEN GenConclAtAddr [2;2;2;2;2;2;2;2;1]
THEN InstConcl [\mkleeneopen{}v\mkleeneclose{};\mkleeneopen{}v1\mkleeneclose{};\mkleeneopen{}v2\mkleeneclose{};\mkleeneopen{}v3\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index