Step
*
1
of Lemma
fun-connected-induction2
1. [T] : Type
2. f : T ⟶ T
3. [R] : T ⟶ T ⟶ ℙ
4. ∀x:T. R[x;x]
5. ∀x,y:T. x is f*(f y)
⇒ R[x;f y]
⇒ R[x;y] supposing ¬((f y) = y ∈ T)
⊢ {∀x,y:T. (x is f*(y)
⇒ R[x;y])}
BY
{ Assert ⌜∀n:ℕ. ∀x,y:T. ∀L:T List. (||L|| < n
⇒ x=f*(y) via L
⇒ R[x;y])⌝⋅⋅ }
1
.....assertion.....
1. [T] : Type
2. f : T ⟶ T
3. [R] : T ⟶ T ⟶ ℙ
4. ∀x:T. R[x;x]
5. ∀x,y:T. x is f*(f y)
⇒ R[x;f y]
⇒ R[x;y] supposing ¬((f y) = y ∈ T)
⊢ ∀n:ℕ. ∀x,y:T. ∀L:T List. (||L|| < n
⇒ x=f*(y) via L
⇒ R[x;y])
2
1. [T] : Type
2. f : T ⟶ T
3. [R] : T ⟶ T ⟶ ℙ
4. ∀x:T. R[x;x]
5. ∀x,y:T. x is f*(f y)
⇒ R[x;f y]
⇒ R[x;y] supposing ¬((f y) = y ∈ T)
6. ∀n:ℕ. ∀x,y:T. ∀L:T List. (||L|| < n
⇒ x=f*(y) via L
⇒ R[x;y])
⊢ {∀x,y:T. (x is f*(y)
⇒ R[x;y])}
Latex:
Latex:
1. [T] : Type
2. f : T {}\mrightarrow{} T
3. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. \mforall{}x:T. R[x;x]
5. \mforall{}x,y:T. x is f*(f y) {}\mRightarrow{} R[x;f y] {}\mRightarrow{} R[x;y] supposing \mneg{}((f y) = y)
\mvdash{} \{\mforall{}x,y:T. (x is f*(y) {}\mRightarrow{} R[x;y])\}
By
Latex:
Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}x,y:T. \mforall{}L:T List. (||L|| < n {}\mRightarrow{} x=f*(y) via L {}\mRightarrow{} R[x;y])\mkleeneclose{}\mcdot{}\mcdot{}
Home
Index