Step
*
of Lemma
fun-connected-step-back
No Annotations
∀[T:Type]. ∀f:T ⟶ T. ∀x,y:T. (x is f*(y)
⇒ x is f*(f y) supposing ¬(x = y ∈ T))
BY
{ (Auto THEN D -2 THEN (Assert ¬↑null(L) BY (DVar `L' THEN RepUR ``fun-path`` -2 THEN Reduce 0 THEN Auto'))) }
1
1. [T] : Type
2. f : T ⟶ T
3. x : T
4. y : T
5. L : T List
6. x=f*(y) via L
7. ¬(x = y ∈ T)
8. ¬↑null(L)
⊢ x is f*(f y)
Latex:
Latex:
No Annotations
\mforall{}[T:Type]. \mforall{}f:T {}\mrightarrow{} T. \mforall{}x,y:T. (x is f*(y) {}\mRightarrow{} x is f*(f y) supposing \mneg{}(x = y))
By
Latex:
(Auto
THEN D -2
THEN (Assert \mneg{}\muparrow{}null(L) BY
(DVar `L' THEN RepUR ``fun-path`` -2 THEN Reduce 0 THEN Auto')))
Home
Index