Step
*
of Lemma
fun-connected-to-same
∀[T:Type]
∀f:T ⟶ T
(retraction(T;f)
⇒ (∀x,y:T. Dec(x = y ∈ T))
⇒ (∀x,z:T. (x is f*(z)
⇒ (∀y:T. (y is f*(z)
⇒ (x is f*(y) ∨ y is f*(x)))))))
BY
{ (xxxRepeatFor 4 ((D 0 THENA Auto))xxx THEN BLemma `fun-connected-induction` THEN Auto) }
1
1. [T] : Type
2. f : T ⟶ T
3. retraction(T;f)
4. ∀x,y:T. Dec(x = y ∈ T)
5. x : T
6. z : T
7. z1 : T
8. x = (f z) ∈ T
9. ¬(x = z ∈ T)
10. z is f*(z1)
11. ∀y@0:T. (y@0 is f*(z1)
⇒ (z is f*(y@0) ∨ y@0 is f*(z)))
12. y : T
13. y is f*(z1)
⊢ x is f*(y) ∨ y is f*(x)
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}f:T {}\mrightarrow{} T
(retraction(T;f)
{}\mRightarrow{} (\mforall{}x,y:T. Dec(x = y))
{}\mRightarrow{} (\mforall{}x,z:T. (x is f*(z) {}\mRightarrow{} (\mforall{}y:T. (y is f*(z) {}\mRightarrow{} (x is f*(y) \mvee{} y is f*(x)))))))
By
Latex:
(xxxRepeatFor 4 ((D 0 THENA Auto))xxx THEN BLemma `fun-connected-induction` THEN Auto)
Home
Index