Step
*
1
of Lemma
generic-countable-intersection
1. [T] : Type
2. [S] : ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'
3. ∀i:ℕ
∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ S[i;x])))
⊢ ∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ (∀i:ℕ. S[i;x]))))
BY
{ xxxAssert ⌜∃code:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;code)⌝⋅xxx }
1
.....assertion.....
1. [T] : Type
2. [S] : ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'
3. ∀i:ℕ
∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ S[i;x])))
⊢ ∃code:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;code)
2
1. [T] : Type
2. [S] : ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'
3. ∀i:ℕ
∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ S[i;x])))
4. ∃code:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;code)
⊢ ∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ (∀i:ℕ. S[i;x]))))
Latex:
Latex:
1. [T] : Type
2. [S] : \mBbbN{} {}\mrightarrow{} (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}'
3. \mforall{}i:\mBbbN{}
\mexists{}R:\mBbbN{} {}\mrightarrow{} (T List) {}\mrightarrow{} \mBbbP{}
((\mforall{}i:\mBbbN{}. \mforall{}s:T List. \mexists{}s':T List. (s \mleq{} s' \mwedge{} (R i s')))
\mwedge{} (\mforall{}x:\mBbbN{} {}\mrightarrow{} T. ((\mforall{}i:\mBbbN{}. \mexists{}s:T List. ((R i s) \mwedge{} (\mforall{}n:\mBbbN{}||s||. (s[n] = (x n))))) {}\mRightarrow{} S[i;x])))
\mvdash{} \mexists{}R:\mBbbN{} {}\mrightarrow{} (T List) {}\mrightarrow{} \mBbbP{}
((\mforall{}i:\mBbbN{}. \mforall{}s:T List. \mexists{}s':T List. (s \mleq{} s' \mwedge{} (R i s')))
\mwedge{} (\mforall{}x:\mBbbN{} {}\mrightarrow{} T. ((\mforall{}i:\mBbbN{}. \mexists{}s:T List. ((R i s) \mwedge{} (\mforall{}n:\mBbbN{}||s||. (s[n] = (x n))))) {}\mRightarrow{} (\mforall{}i:\mBbbN{}. S[i;x]))))
By
Latex:
xxxAssert \mkleeneopen{}\mexists{}code:\mBbbN{} {}\mrightarrow{} (\mBbbN{} \mtimes{} \mBbbN{}). Surj(\mBbbN{};\mBbbN{} \mtimes{} \mBbbN{};code)\mkleeneclose{}\mcdot{}xxx
Home
Index