Step
*
2
of Lemma
int-list-index-append
1. x : ℤ
2. u : ℤ
3. v : ℤ List
4. ∀[L2:ℤ List]
(int-list-index(v @ L2;x) ~ if int-list-member(x;v) then int-list-index(v;x) else ||v|| + int-list-index(L2;x) fi )
⊢ ∀[L2:ℤ List]
(int-list-index([u / (v @ L2)];x) ~ if int-list-member(x;[u / v])
then int-list-index([u / v];x)
else (||v|| + 1) + int-list-index(L2;x)
fi )
BY
{ (Auto THEN AutoSplit THEN Unfold `int-list-index` 0 THEN Reduce 0 THEN Fold `int-list-index` 0 THEN AutoSplit) }
1
1. x : ℤ
2. u : ℤ
3. u ≠ x
4. v : ℤ List
5. ∀[L2:ℤ List]
(int-list-index(v @ L2;x) ~ if int-list-member(x;v) then int-list-index(v;x) else ||v|| + int-list-index(L2;x) fi )
6. L2 : ℤ List
7. (x ∈ [u / v])
⊢ (int-list-index(v @ L2;x) + 1) = (int-list-index(v;x) + 1) ∈ ℕ(||v @ L2|| + 1) + 1
2
1. x : ℤ
2. u : ℤ
3. v : ℤ List
4. ¬(x ∈ [u / v])
5. ∀[L2:ℤ List]
(int-list-index(v @ L2;x) ~ if int-list-member(x;v) then int-list-index(v;x) else ||v|| + int-list-index(L2;x) fi )
6. L2 : ℤ List
7. u = x ∈ ℤ
⊢ 0 = ((||v|| + 1) + int-list-index(L2;x)) ∈ ℕ(||v @ L2|| + 1) + 1
3
1. x : ℤ
2. u : ℤ
3. u ≠ x
4. v : ℤ List
5. ¬(x ∈ [u / v])
6. ∀[L2:ℤ List]
(int-list-index(v @ L2;x) ~ if int-list-member(x;v) then int-list-index(v;x) else ||v|| + int-list-index(L2;x) fi )
7. L2 : ℤ List
⊢ (int-list-index(v @ L2;x) + 1) = ((||v|| + 1) + int-list-index(L2;x)) ∈ ℕ(||v @ L2|| + 1) + 1
Latex:
Latex:
1. x : \mBbbZ{}
2. u : \mBbbZ{}
3. v : \mBbbZ{} List
4. \mforall{}[L2:\mBbbZ{} List]
(int-list-index(v @ L2;x) \msim{} if int-list-member(x;v)
then int-list-index(v;x)
else ||v|| + int-list-index(L2;x)
fi )
\mvdash{} \mforall{}[L2:\mBbbZ{} List]
(int-list-index([u / (v @ L2)];x) \msim{} if int-list-member(x;[u / v])
then int-list-index([u / v];x)
else (||v|| + 1) + int-list-index(L2;x)
fi )
By
Latex:
(Auto
THEN AutoSplit
THEN Unfold `int-list-index` 0
THEN Reduce 0
THEN Fold `int-list-index` 0
THEN AutoSplit)
Home
Index