Step
*
2
2
2
of Lemma
iroot-lemma
1. a : ℕ
2. n : ℕ+
3. b : ℕ+
4. k : ℕ+
5. a + k ∈ ℕ+
6. M : ℕ+
7. a + k < M^n
8. y : ℕ+
9. (n * b * M^(n - 1)) ≤ (k * y)
10. (a + k) * y^n ∈ ℕ+
⊢ ∃x:ℕ. ∃y:ℕ+. (a * y^n < (x * b)^n ∧ ((x * b)^n ≤ ((a + k) * y^n)))
BY
{ (InstConcl [⌜iroot(n;(a + k) * y^n) ÷ b⌝;⌜y⌝]⋅ THEN Auto THEN Auto')⋅ }
1
1. a : ℕ
2. n : ℕ+
3. b : ℕ+
4. k : ℕ+
5. a + k ∈ ℕ+
6. M : ℕ+
7. a + k < M^n
8. y : ℕ+
9. (n * b * M^(n - 1)) ≤ (k * y)
10. (a + k) * y^n ∈ ℕ+
⊢ a * y^n < ((iroot(n;(a + k) * y^n) ÷ b) * b)^n
2
1. a : ℕ
2. n : ℕ+
3. b : ℕ+
4. k : ℕ+
5. a + k ∈ ℕ+
6. M : ℕ+
7. a + k < M^n
8. y : ℕ+
9. (n * b * M^(n - 1)) ≤ (k * y)
10. (a + k) * y^n ∈ ℕ+
11. a * y^n < ((iroot(n;(a + k) * y^n) ÷ b) * b)^n
⊢ ((iroot(n;(a + k) * y^n) ÷ b) * b)^n ≤ ((a + k) * y^n)
Latex:
Latex:
1. a : \mBbbN{}
2. n : \mBbbN{}\msupplus{}
3. b : \mBbbN{}\msupplus{}
4. k : \mBbbN{}\msupplus{}
5. a + k \mmember{} \mBbbN{}\msupplus{}
6. M : \mBbbN{}\msupplus{}
7. a + k < M\^{}n
8. y : \mBbbN{}\msupplus{}
9. (n * b * M\^{}(n - 1)) \mleq{} (k * y)
10. (a + k) * y\^{}n \mmember{} \mBbbN{}\msupplus{}
\mvdash{} \mexists{}x:\mBbbN{}. \mexists{}y:\mBbbN{}\msupplus{}. (a * y\^{}n < (x * b)\^{}n \mwedge{} ((x * b)\^{}n \mleq{} ((a + k) * y\^{}n)))
By
Latex:
(InstConcl [\mkleeneopen{}iroot(n;(a + k) * y\^{}n) \mdiv{} b\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{} THEN Auto THEN Auto')\mcdot{}
Home
Index