Step
*
of Lemma
list_split_wf
∀[T:Type]. ∀[f:(T List) ⟶ 𝔹]. ∀[L:T List].
(list_split(f;L) ∈ {p:T List List × (T List)| let LL,L2 = p in is_list_splitting(T;L;LL;L2;f)} )
BY
{ (InductionOnLength THEN (Decide ↑null(L) THENA Auto)) }
1
1. T : Type
2. f : (T List) ⟶ 𝔹
3. n : ℕ
4. L : T List
5. ∀L1:T List
(||L1|| < ||L||
⇒ (list_split(f;L1) ∈ {p:T List List × (T List)| let LL,L2 = p in is_list_splitting(T;L1;LL;L2;f)} ))
6. ↑null(L)
⊢ list_split(f;L) ∈ {p:T List List × (T List)| let LL,L2 = p in is_list_splitting(T;L;LL;L2;f)}
2
1. T : Type
2. f : (T List) ⟶ 𝔹
3. n : ℕ
4. L : T List
5. ∀L1:T List
(||L1|| < ||L||
⇒ (list_split(f;L1) ∈ {p:T List List × (T List)| let LL,L2 = p in is_list_splitting(T;L1;LL;L2;f)} ))
6. ¬↑null(L)
⊢ list_split(f;L) ∈ {p:T List List × (T List)| let LL,L2 = p in is_list_splitting(T;L;LL;L2;f)}
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[f:(T List) {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:T List].
(list\_split(f;L) \mmember{} \{p:T List List \mtimes{} (T List)| let LL,L2 = p in is\_list\_splitting(T;L;LL;L2;f)\} )
By
Latex:
(InductionOnLength THEN (Decide \muparrow{}null(L) THENA Auto))
Home
Index