Step
*
2
of Lemma
llex_transitivity
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. Trans(A;a,b.<[a;b])
4. as : A List
5. bs : A List
6. cs : A List
7. ∃i:ℕ. (i < ||as|| ∧ i < ||bs|| ∧ (∀j:ℕi. (as[j] = bs[j] ∈ A)) ∧ <[as[i];bs[i]])
8. ||bs|| < ||cs|| ∧ (∀i:ℕ||bs||. (bs[i] = cs[i] ∈ A))
⊢ (||as|| < ||cs|| ∧ (∀i:ℕ||as||. (as[i] = cs[i] ∈ A)))
∨ (∃i:ℕ. (i < ||as|| ∧ i < ||cs|| ∧ (∀j:ℕi. (as[j] = cs[j] ∈ A)) ∧ <[as[i];cs[i]]))
BY
{ (OrRight THENA Auto) }
1
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. Trans(A;a,b.<[a;b])
4. as : A List
5. bs : A List
6. cs : A List
7. ∃i:ℕ. (i < ||as|| ∧ i < ||bs|| ∧ (∀j:ℕi. (as[j] = bs[j] ∈ A)) ∧ <[as[i];bs[i]])
8. ||bs|| < ||cs|| ∧ (∀i:ℕ||bs||. (bs[i] = cs[i] ∈ A))
⊢ ∃i:ℕ. (i < ||as|| ∧ i < ||cs|| ∧ (∀j:ℕi. (as[j] = cs[j] ∈ A)) ∧ <[as[i];cs[i]])
Latex:
Latex:
1. [A] : Type
2. [<] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. Trans(A;a,b.<[a;b])
4. as : A List
5. bs : A List
6. cs : A List
7. \mexists{}i:\mBbbN{}. (i < ||as|| \mwedge{} i < ||bs|| \mwedge{} (\mforall{}j:\mBbbN{}i. (as[j] = bs[j])) \mwedge{} <[as[i];bs[i]])
8. ||bs|| < ||cs|| \mwedge{} (\mforall{}i:\mBbbN{}||bs||. (bs[i] = cs[i]))
\mvdash{} (||as|| < ||cs|| \mwedge{} (\mforall{}i:\mBbbN{}||as||. (as[i] = cs[i])))
\mvee{} (\mexists{}i:\mBbbN{}. (i < ||as|| \mwedge{} i < ||cs|| \mwedge{} (\mforall{}j:\mBbbN{}i. (as[j] = cs[j])) \mwedge{} <[as[i];cs[i]]))
By
Latex:
(OrRight THENA Auto)
Home
Index