Step
*
of Lemma
map-as-map-upto
∀[F:Top]. ∀[L:Top List]. (map(λx.F[x];L) ~ map(λi.F[L[i]];upto(||L||)))
BY
{ (InductionOnList
THEN Reduce 0
THEN Try (Trivial)
THEN RWO "-1" 0
THEN Subst' upto(||v|| + 1) ~ [0 / map(λi.(i + 1);upto(||v||))] 0⋅) }
1
.....equality.....
1. F : Top
2. u : Top
3. v : Top List
4. map(λx.F[x];v) ~ map(λi.F[v[i]];upto(||v||))
⊢ upto(||v|| + 1) ~ [0 / map(λi.(i + 1);upto(||v||))]
2
1. F : Top
2. u : Top
3. v : Top List
4. map(λx.F[x];v) ~ map(λi.F[v[i]];upto(||v||))
⊢ [F[u] / map(λi.F[v[i]];upto(||v||))] ~ map(λi.F[[u / v][i]];[0 / map(λi.(i + 1);upto(||v||))])
Latex:
Latex:
\mforall{}[F:Top]. \mforall{}[L:Top List]. (map(\mlambda{}x.F[x];L) \msim{} map(\mlambda{}i.F[L[i]];upto(||L||)))
By
Latex:
(InductionOnList
THEN Reduce 0
THEN Try (Trivial)
THEN RWO "-1" 0
THEN Subst' upto(||v|| + 1) \msim{} [0 / map(\mlambda{}i.(i + 1);upto(||v||))] 0\mcdot{})
Home
Index