Nuprl Lemma : not-false

uiff(¬False;True)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) not: ¬A false: False true: True
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T true: True prop: uall: [x:A]. B[x] not: ¬A implies:  Q false: False
Lemmas referenced :  not_wf false_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin lambdaFormation voidElimination lambdaEquality dependent_functionElimination hypothesisEquality

Latex:
uiff(\mneg{}False;True)



Date html generated: 2016_05_15-PM-03_27_05
Last ObjectModification: 2015_12_27-PM-01_08_10

Theory : general


Home Index