Nuprl Lemma : not-false
uiff(¬False;True)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
true: True
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
true: True
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
not_wf, 
false_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
lambdaFormation, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality
Latex:
uiff(\mneg{}False;True)
Date html generated:
2016_05_15-PM-03_27_05
Last ObjectModification:
2015_12_27-PM-01_08_10
Theory : general
Home
Index