Nuprl Lemma : p-mu-decider

[A:Type]. ∀P:A ⟶ ℕ ⟶ 𝔹((∀x:A. Dec(∃n:ℕ(↑(P n))))  (∀x:A. ∃y:ℕ Top. p-mu(P x;y)))


Proof




Definitions occuring in Statement :  p-mu: p-mu(P;x) nat: assert: b bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  p-mu-exists all_wf decidable_wf exists_wf nat_wf assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin applyEquality hypothesisEquality independent_functionElimination hypothesis isectElimination sqequalRule lambdaEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n))))  {}\mRightarrow{}  (\mforall{}x:A.  \mexists{}y:\mBbbN{}  +  Top.  p-mu(P  x;y)))



Date html generated: 2016_05_15-PM-03_32_51
Last ObjectModification: 2015_12_27-PM-01_12_00

Theory : general


Home Index