Nuprl Lemma : p-mu-decider
∀[A:Type]. ∀P:A ⟶ ℕ ⟶ 𝔹. ((∀x:A. Dec(∃n:ℕ. (↑(P x n)))) ⇒ (∀x:A. ∃y:ℕ + Top. p-mu(P x;y)))
Proof
Definitions occuring in Statement : 
p-mu: p-mu(P;x), 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
p-mu-exists, 
all_wf, 
decidable_wf, 
exists_wf, 
nat_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n))))  {}\mRightarrow{}  (\mforall{}x:A.  \mexists{}y:\mBbbN{}  +  Top.  p-mu(P  x;y)))
 Date html generated: 
2016_05_15-PM-03_32_51
 Last ObjectModification: 
2015_12_27-PM-01_12_00
Theory : general
Home
Index