Nuprl Lemma : p-mu-decider
∀[A:Type]. ∀P:A ⟶ ℕ ⟶ 𝔹. ((∀x:A. Dec(∃n:ℕ. (↑(P x n)))) 
⇒ (∀x:A. ∃y:ℕ + Top. p-mu(P x;y)))
Proof
Definitions occuring in Statement : 
p-mu: p-mu(P;x)
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
p-mu-exists, 
all_wf, 
decidable_wf, 
exists_wf, 
nat_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n))))  {}\mRightarrow{}  (\mforall{}x:A.  \mexists{}y:\mBbbN{}  +  Top.  p-mu(P  x;y)))
Date html generated:
2016_05_15-PM-03_32_51
Last ObjectModification:
2015_12_27-PM-01_12_00
Theory : general
Home
Index