Step
*
of Lemma
power-sum_functionality_wrt_eqmod
∀m:ℤ. ∀n:ℕ. ∀x,y:ℤ. ∀a,b:ℕn ⟶ ℤ.
((x ≡ y mod m)
⇒ (∀i:ℕn. (a[i] ≡ b[i] mod m))
⇒ (Σi<n.a[i]*x^i ≡ Σi<n.b[i]*y^i mod m))
BY
{ (Auto
THEN Unfold `power-sum` 0
THEN (RWO "sum-as-primrec" 0 THENA Auto)
THEN Repeat (MoveToConcl (-1))
THEN (PrimrecInductionOn `n' THENA Auto)
THEN Try ((RelRST THENA Auto))
THEN Try (CompleteAuto ⋅)
THEN (BLemma `add_functionality_wrt_eqmod` THENA Auto)
THEN Try ((BackThruSomeHyp THEN Auto)⋅)
THEN ((RWO "-1 -2" 0 THENM RelRST) THENA Auto)⋅) }
Latex:
Latex:
\mforall{}m:\mBbbZ{}. \mforall{}n:\mBbbN{}. \mforall{}x,y:\mBbbZ{}. \mforall{}a,b:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}.
((x \mequiv{} y mod m) {}\mRightarrow{} (\mforall{}i:\mBbbN{}n. (a[i] \mequiv{} b[i] mod m)) {}\mRightarrow{} (\mSigma{}i<n.a[i]*x\^{}i \mequiv{} \mSigma{}i<n.b[i]*y\^{}i mod m))
By
Latex:
(Auto
THEN Unfold `power-sum` 0
THEN (RWO "sum-as-primrec" 0 THENA Auto)
THEN Repeat (MoveToConcl (-1))
THEN (PrimrecInductionOn `n' THENA Auto)
THEN Try ((RelRST THENA Auto))
THEN Try (CompleteAuto \mcdot{})
THEN (BLemma `add\_functionality\_wrt\_eqmod` THENA Auto)
THEN Try ((BackThruSomeHyp THEN Auto)\mcdot{})
THEN ((RWO "-1 -2" 0 THENM RelRST) THENA Auto)\mcdot{})
Home
Index