Step
*
1
2
1
2
1
1
of Lemma
prime-sum-of-two-squares-lemma
1. p : Prime
2. r : ℕ
3. ∀c:ℕr. ∀a,b:ℤ. (((((a * a) + (b * b)) = (p * c) ∈ ℤ) ∧ 0 < c ∧ c < p)
⇒ (∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)))
4. a : ℤ
5. b : ℤ
6. ((a * a) + (b * b)) = (p * r) ∈ ℤ
7. 0 < r
8. r < p
9. ¬(r = 1 ∈ ℤ)
10. u1 : ℤ
11. (2 * |u1|) ≤ r
12. u1 ≡ a mod r
13. u2 : ℤ
14. (2 * |u2|) ≤ r
15. u2 ≡ (-b) mod r
16. ((u1 * u1) ≡ (a * a) mod r) ∧ ((u2 * u2) ≡ ((-b) * (-b)) mod r)
17. ((u1 * u1) + (u2 * u2)) ≡ ((a * a) + (b * b)) mod r
18. ((a * a) + (b * b)) ≡ 0 mod r
19. ((u1 * u1) + (u2 * u2)) ≡ 0 mod r
⊢ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)
BY
{ (DupHyp (-1) THEN D -1 THEN Assert ⌜c ∈ ℕr⌝⋅) }
1
.....assertion.....
1. p : Prime
2. r : ℕ
3. ∀c:ℕr. ∀a,b:ℤ. (((((a * a) + (b * b)) = (p * c) ∈ ℤ) ∧ 0 < c ∧ c < p)
⇒ (∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)))
4. a : ℤ
5. b : ℤ
6. ((a * a) + (b * b)) = (p * r) ∈ ℤ
7. 0 < r
8. r < p
9. ¬(r = 1 ∈ ℤ)
10. u1 : ℤ
11. (2 * |u1|) ≤ r
12. u1 ≡ a mod r
13. u2 : ℤ
14. (2 * |u2|) ≤ r
15. u2 ≡ (-b) mod r
16. ((u1 * u1) ≡ (a * a) mod r) ∧ ((u2 * u2) ≡ ((-b) * (-b)) mod r)
17. ((u1 * u1) + (u2 * u2)) ≡ ((a * a) + (b * b)) mod r
18. ((a * a) + (b * b)) ≡ 0 mod r
19. ((u1 * u1) + (u2 * u2)) ≡ 0 mod r
20. c : ℤ
21. (((u1 * u1) + (u2 * u2)) - 0) = (r * c) ∈ ℤ
⊢ c ∈ ℕr
2
1. p : Prime
2. r : ℕ
3. ∀c:ℕr. ∀a,b:ℤ. (((((a * a) + (b * b)) = (p * c) ∈ ℤ) ∧ 0 < c ∧ c < p)
⇒ (∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)))
4. a : ℤ
5. b : ℤ
6. ((a * a) + (b * b)) = (p * r) ∈ ℤ
7. 0 < r
8. r < p
9. ¬(r = 1 ∈ ℤ)
10. u1 : ℤ
11. (2 * |u1|) ≤ r
12. u1 ≡ a mod r
13. u2 : ℤ
14. (2 * |u2|) ≤ r
15. u2 ≡ (-b) mod r
16. ((u1 * u1) ≡ (a * a) mod r) ∧ ((u2 * u2) ≡ ((-b) * (-b)) mod r)
17. ((u1 * u1) + (u2 * u2)) ≡ ((a * a) + (b * b)) mod r
18. ((a * a) + (b * b)) ≡ 0 mod r
19. ((u1 * u1) + (u2 * u2)) ≡ 0 mod r
20. c : ℤ
21. (((u1 * u1) + (u2 * u2)) - 0) = (r * c) ∈ ℤ
22. c ∈ ℕr
⊢ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)
Latex:
Latex:
1. p : Prime
2. r : \mBbbN{}
3. \mforall{}c:\mBbbN{}r. \mforall{}a,b:\mBbbZ{}.
(((((a * a) + (b * b)) = (p * c)) \mwedge{} 0 < c \mwedge{} c < p) {}\mRightarrow{} (\mexists{}a,b:\mBbbZ{}. (p = ((a * a) + (b * b)))))
4. a : \mBbbZ{}
5. b : \mBbbZ{}
6. ((a * a) + (b * b)) = (p * r)
7. 0 < r
8. r < p
9. \mneg{}(r = 1)
10. u1 : \mBbbZ{}
11. (2 * |u1|) \mleq{} r
12. u1 \mequiv{} a mod r
13. u2 : \mBbbZ{}
14. (2 * |u2|) \mleq{} r
15. u2 \mequiv{} (-b) mod r
16. ((u1 * u1) \mequiv{} (a * a) mod r) \mwedge{} ((u2 * u2) \mequiv{} ((-b) * (-b)) mod r)
17. ((u1 * u1) + (u2 * u2)) \mequiv{} ((a * a) + (b * b)) mod r
18. ((a * a) + (b * b)) \mequiv{} 0 mod r
19. ((u1 * u1) + (u2 * u2)) \mequiv{} 0 mod r
\mvdash{} \mexists{}a,b:\mBbbZ{}. (p = ((a * a) + (b * b)))
By
Latex:
(DupHyp (-1) THEN D -1 THEN Assert \mkleeneopen{}c \mmember{} \mBbbN{}r\mkleeneclose{}\mcdot{})
Home
Index