Step
*
1
1
1
of Lemma
prime-sum-of-two-squares
1. p : Prime
2. a : ℤ
3. (2 * |a|) ≤ p
4. b : ℤ
5. ¬((a ≡ 0 mod p) ∧ (b ≡ 0 mod p))
6. (2 * |b|) ≤ p
7. ((a * a) + (b * b)) ≡ 0 mod p
⊢ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)
BY
{ (Assert ¬((|a| ≡ 0 mod p) ∧ (|b| ≡ 0 mod p)) BY
(ParallelOp -3
THEN ParallelLast
THEN MoveToConcl (-1)
THEN (RWO "absval_unfold" 0 THENA Auto)
THEN (AutoSplit THEN Auto)
THEN D -1
THEN D 0 With ⌜-c⌝
THEN Auto)) }
1
1. p : Prime
2. a : ℤ
3. (2 * |a|) ≤ p
4. b : ℤ
5. ¬((a ≡ 0 mod p) ∧ (b ≡ 0 mod p))
6. (2 * |b|) ≤ p
7. ((a * a) + (b * b)) ≡ 0 mod p
8. ¬((|a| ≡ 0 mod p) ∧ (|b| ≡ 0 mod p))
⊢ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)
Latex:
Latex:
1. p : Prime
2. a : \mBbbZ{}
3. (2 * |a|) \mleq{} p
4. b : \mBbbZ{}
5. \mneg{}((a \mequiv{} 0 mod p) \mwedge{} (b \mequiv{} 0 mod p))
6. (2 * |b|) \mleq{} p
7. ((a * a) + (b * b)) \mequiv{} 0 mod p
\mvdash{} \mexists{}a,b:\mBbbZ{}. (p = ((a * a) + (b * b)))
By
Latex:
(Assert \mneg{}((|a| \mequiv{} 0 mod p) \mwedge{} (|b| \mequiv{} 0 mod p)) BY
(ParallelOp -3
THEN ParallelLast
THEN MoveToConcl (-1)
THEN (RWO "absval\_unfold" 0 THENA Auto)
THEN (AutoSplit THEN Auto)
THEN D -1
THEN D 0 With \mkleeneopen{}-c\mkleeneclose{}
THEN Auto))
Home
Index