Step
*
of Lemma
prior-cases
∀[T:Type]
∀f:ℕ ⟶ (T + Top). ∀n:ℕ.
case prior(n;f)
of inl(p) =>
let m,x = p
in ((f m) = (inl x) ∈ (T + Top)) ∧ (∀k:{m + 1..n-}. (¬↑isl(f k)))
| inr(q) =>
∀k:ℕn. (¬↑isl(f k))
BY
{ (InductionOnNat
THEN Try ((Unfold `prior` 0 THEN (RWO "natrec-unroll" 0 THENA Auto) THEN Reduce 0 THEN Complete (Auto))⋅)
) }
1
.....upcase.....
1. [T] : Type
2. f : ℕ ⟶ (T + Top)
3. n : ℤ
4. [%1] : 0 < n
5. case prior(n - 1;f)
of inl(p) =>
let m,x = p
in ((f m) = (inl x) ∈ (T + Top)) ∧ (∀k:{m + 1..n - 1-}. (¬↑isl(f k)))
| inr(q) =>
∀k:ℕn - 1. (¬↑isl(f k))
⊢ case prior(n;f)
of inl(p) =>
let m,x = p
in ((f m) = (inl x) ∈ (T + Top)) ∧ (∀k:{m + 1..n-}. (¬↑isl(f k)))
| inr(q) =>
∀k:ℕn. (¬↑isl(f k))
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}f:\mBbbN{} {}\mrightarrow{} (T + Top). \mforall{}n:\mBbbN{}.
case prior(n;f)
of inl(p) =>
let m,x = p
in ((f m) = (inl x)) \mwedge{} (\mforall{}k:\{m + 1..n\msupminus{}\}. (\mneg{}\muparrow{}isl(f k)))
| inr(q) =>
\mforall{}k:\mBbbN{}n. (\mneg{}\muparrow{}isl(f k))
By
Latex:
(InductionOnNat
THEN Try ((Unfold `prior` 0
THEN (RWO "natrec-unroll" 0 THENA Auto)
THEN Reduce 0
THEN Complete (Auto))\mcdot{})
)
Home
Index