Step
*
1
of Lemma
proof_tree_ind_wf
1. Sequent : Type
2. Rule : Type
3. effect : (Sequent × Rule) ⟶ (Sequent List?)
4. Q : proof-tree(Sequent;Rule;effect) ⟶ ℙ
5. abort : ∀s:Sequent. ∀r:Rule. Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>)
6. progress : ∀s:Sequent. ∀r:Rule.
∀L:proof-tree(Sequent;Rule;effect) List
(∀pf∈L.Q[pf])
⇒ Q[make-proof-tree(s;r;L)] supposing ||L|| = ||outl(effect <s, r>)|| ∈ ℤ
supposing ↑isl(effect <s, r>)
7. pf : proof-tree(Sequent;Rule;effect)
8. TERMOF{proof-tree-induction-ext:o, \\v:l, i:l} effect abort progress ∈ ∀pf:proof-tree(Sequent;Rule;effect). Q[pf]
⊢ proof_tree_ind(effect;abort;progress;pf) ∈ Q[pf]
BY
{ TACTIC:(Unfold `all` -1
THEN (Assert TERMOF{proof-tree-induction-ext:o, \\v:l, i:l} effect abort progress pf ∈ Q[pf] BY
Auto)
THEN NthHypSq (-1)
THEN EqCD
THEN Auto) }
1
1. Sequent : Type
2. Rule : Type
3. effect : (Sequent × Rule) ⟶ (Sequent List?)
4. Q : proof-tree(Sequent;Rule;effect) ⟶ ℙ
5. abort : ∀s:Sequent. ∀r:Rule. Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>)
6. progress : ∀s:Sequent. ∀r:Rule.
∀L:proof-tree(Sequent;Rule;effect) List
(∀pf∈L.Q[pf])
⇒ Q[make-proof-tree(s;r;L)] supposing ||L|| = ||outl(effect <s, r>)|| ∈ ℤ
supposing ↑isl(effect <s, r>)
7. pf : proof-tree(Sequent;Rule;effect)
8. TERMOF{proof-tree-induction-ext:o, \\v:l, i:l} effect abort progress ∈ pf:proof-tree(Sequent;Rule;effect) ⟶ Q[pf]
9. TERMOF{proof-tree-induction-ext:o, \\v:l, i:l} effect abort progress pf ∈ Q[pf]
⊢ proof_tree_ind(effect;abort;progress;pf) ~ TERMOF{proof-tree-induction-ext:o, \\v:l, i:l} effect abort progress pf
Latex:
Latex:
1. Sequent : Type
2. Rule : Type
3. effect : (Sequent \mtimes{} Rule) {}\mrightarrow{} (Sequent List?)
4. Q : proof-tree(Sequent;Rule;effect) {}\mrightarrow{} \mBbbP{}
5. abort : \mforall{}s:Sequent. \mforall{}r:Rule. Q[proof-abort(s;r)] supposing \muparrow{}isr(effect <s, r>)
6. progress : \mforall{}s:Sequent. \mforall{}r:Rule.
\mforall{}L:proof-tree(Sequent;Rule;effect) List
(\mforall{}pf\mmember{}L.Q[pf]) {}\mRightarrow{} Q[make-proof-tree(s;r;L)] supposing ||L|| = ||outl(effect <s, r>)\000C||
supposing \muparrow{}isl(effect <s, r>)
7. pf : proof-tree(Sequent;Rule;effect)
8. TERMOF\{proof-tree-induction-ext:o, \mbackslash{}\mbackslash{}v:l, i:l\} effect abort progress
\mmember{} \mforall{}pf:proof-tree(Sequent;Rule;effect). Q[pf]
\mvdash{} proof\_tree\_ind(effect;abort;progress;pf) \mmember{} Q[pf]
By
Latex:
TACTIC:(Unfold `all` -1
THEN (Assert TERMOF\{proof-tree-induction-ext:o, \mbackslash{}\mbackslash{}v:l, i:l\} effect abort progress pf
\mmember{} Q[pf] BY
Auto)
THEN NthHypSq (-1)
THEN EqCD
THEN Auto)
Home
Index