Step
*
1
of Lemma
psub_transitivity
.....assertion.....
∀c,a,b:formula(). (a ⊆ b
⇒ b ⊆ c
⇒ a ⊆ c)
BY
{ ((BLemma `formula-induction` THENA Auto)
THEN Unfold `psub` 0
THEN Reduce 0
THEN Fold `psub` 0
THEN (Auto
THEN SplitOrHyps
THEN Try (((HypSubst' (-1) (-2) THENA Auto)
THEN Unfold `psub` -2
THEN Reduce (-2)
THEN Try (Fold `psub` (-2))
THEN Trivial))
THEN Try (((InstHyp [⌜a⌝;⌜b⌝] 3⋅ THENM Sel 2 (D 0)) THEN Complete (Auto)))
THEN Try (((InstHyp [⌜a⌝;⌜b⌝] 4⋅ THENM Sel 3 (D 0)) THEN Complete (Auto)))
THEN Try (((InstHyp [⌜a⌝;⌜b⌝] 2⋅ THENM Sel 2 (D 0)) THEN Complete (Auto)))⋅)⋅) }
Latex:
Latex:
.....assertion.....
\mforall{}c,a,b:formula(). (a \msubseteq{} b {}\mRightarrow{} b \msubseteq{} c {}\mRightarrow{} a \msubseteq{} c)
By
Latex:
((BLemma `formula-induction` THENA Auto)
THEN Unfold `psub` 0
THEN Reduce 0
THEN Fold `psub` 0
THEN (Auto
THEN SplitOrHyps
THEN Try (((HypSubst' (-1) (-2) THENA Auto)
THEN Unfold `psub` -2
THEN Reduce (-2)
THEN Try (Fold `psub` (-2))
THEN Trivial))
THEN Try (((InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] 3\mcdot{} THENM Sel 2 (D 0)) THEN Complete (Auto)))
THEN Try (((InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] 4\mcdot{} THENM Sel 3 (D 0)) THEN Complete (Auto)))
THEN Try (((InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] 2\mcdot{} THENM Sel 2 (D 0)) THEN Complete (Auto)))\mcdot{})\mcdot{})
Home
Index