Step
*
1
1
of Lemma
quicksort_wf
1. T : Type
2. cmp : comparison(T)
3. valueall-type(T)
4. n : ℕ
5. L : T List@i
6. ∀L1:T List
     (||L1|| < ||L|| 
⇒ (quicksort(cmp;L1) ∈ {srtd:T List| sorted-by(λx,y. (0 ≤ (cmp x y));srtd) ∧ permutation(T;srtd;L1\000C)} ))
7. L = [] ∈ (T List)
⊢ L ∈ {srtd:T List| sorted-by(λx,y. (0 ≤ (cmp x y));srtd) ∧ permutation(T;srtd;L)} 
BY
{ TACTIC:((FLemma `sqequal-nil` [-1] THENA Auto)
          THEN HypSubst' (-1) 0
          THEN MemTypeCD
          THEN Auto
          THEN RWW "sorted-by-nil" 0
          THEN Auto) }
Latex:
Latex:
1.  T  :  Type
2.  cmp  :  comparison(T)
3.  valueall-type(T)
4.  n  :  \mBbbN{}
5.  L  :  T  List@i
6.  \mforall{}L1:T  List
          (||L1||  <  ||L||
          {}\mRightarrow{}  (quicksort(cmp;L1)  \mmember{}  \{srtd:T  List| 
                                                            sorted-by(\mlambda{}x,y.  (0  \mleq{}  (cmp  x  y));srtd)  \mwedge{}  permutation(T;srtd;L1)\}  ))
7.  L  =  []
\mvdash{}  L  \mmember{}  \{srtd:T  List|  sorted-by(\mlambda{}x,y.  (0  \mleq{}  (cmp  x  y));srtd)  \mwedge{}  permutation(T;srtd;L)\} 
By
Latex:
TACTIC:((FLemma  `sqequal-nil`  [-1]  THENA  Auto)
                THEN  HypSubst'  (-1)  0
                THEN  MemTypeCD
                THEN  Auto
                THEN  RWW  "sorted-by-nil"  0
                THEN  Auto)
Home
Index